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THE ELECTRON LIQUID-SOLID PHASE 
TRANSITION IN TWO DIMENSIONS IN A 
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London), Egham, Surrey, TW2O OEX. England. 

t Theoretical Chemistry Department, University of Oxford, 5, South Parks Road, 
Oxford, O X 1  3UB. England. 

(Recened 27 October 1989) 

We present a simple model for the melting curve of a two-dimensional electron solid in a magnetic field and 
compare i t  with recent experiments on the phase diagram of 2-D electrons on cryogenic substrates and in 
GaAs/GaAIAs heterojunctions. 

KEY WORDS: Wigner crystallisation, Landau filling factor, melting temperature 

1 INTRODUCTION 

Some 50 years ago Wigner’ proposed that at sufficiently low density the delocalized 
electron liquid in jellium would give way to a localized electron crystal. The physical 
reason for this, as he clearly recognized, was that at low density where the potential 
energy dominates the kinetic contribution to the total energy E ,  the electrons would 
avoid each other maximally by going on to the sites of a lattice-the Wigner crystal. 
The lattice with the lowest Madelung energy is body-centered-cubic (bcc) and most 
probably this will exhibit long-range antiferromagnetic order’s3, the upward spins 
occupying one of the two interpenetrating simple cubic lattices and the downward 
spins the other. 

Unfortunately, it has, to date, not proved possible to simulate Wigner’s electron 
crystal in the laboratory, though quantum Monte Carlo calculations4 on the jellium 
model have fully vindicated Wigner’s ideas on the electron liquid-electron crystal 
phase transition. However, in 1968, Durkan, Elliott and March’ proposed an 
interpretation of the Hall effect data of Putley6 on n-type InSb in a magnetic field in 
terms of Wigner crystallization taking place at a critical value of the applied magnetic 
field. Subsequent experiments by Somerford’ on the same system were interpreted by 
Care and March’ as a Wigner transition aided by the magnetic field. Later, 
Kleppmann and pressed this interpretation and showed that the anisotropy 
of the conductivity measured by Somerford was consistent with the Wigner transition. 
More recently, McDonald and Bryant” have recalculated the energy of a 3-D 
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electron plasma in a magnetic field including a precise treatment of the exchange 
energy. They find a phase diagram with several other types of ground state ordering 
besides the simple electron Wigner crystal, depending on the field strength and the 
density. 

Very recently, interest in the magnetically induced Wigner solid (MIWS) has been 
revived by the beautiful experiments of Andrei et ~ 1 . ’ ~  and Glattli et ~ 1 . ’ ~  on a 2-D 
electron assembly in a GaAs/GaAlAs heterojunction. These workers pointed out that 
a crucial difference between an electron liquid (delocalized state) and an electron solid 
is that only the latter can sustain low frequency shear waves. Evidence was given by 
Andrei et u1.” that their 2-D electrons, in a magnetic field, could support shear waves. 
Though an alternative interpretation of the experimental data of Andrei et al. has been 
suggested by Stormer and Willett,14 the experiments have now been repeated and the 
MIWS provides the most probable explanation of the data. The sharp onset of a 
propagating mode was used to plot the phase diagram for Wigner crystallisation as a 
function of temperature and field. 

The purpose of this paper is to present a simple model of two-dimensional Wigner 
crystallisation and its melting curve to an electron liquid phase in an applied magnetic 
field. This model will then be compared with experiments in both classical and 
quantum 2-D electron solids. 

2 THE WIGNER OSCILLATOR MODEL 

The model incorporates, in a phenomenological way, the quantum effects of zero- 
point motion, the Kosterlitz-Thouless melting criterion and some aspects of the 
anharmonicity of the electron lattice vibrations. The work of March and TosiI5 on a 
localised harmonic oscillator in a magnetic field is taken as the starting point. They 
calculated the canonical matrix for this system which reduces to the result for free 
electrons of Sondheimer and Wilson16 as the oscillator force constant tends to zero. 
The Landau energy levels for free electrons in a magnetic field of arbitrary strength are 
embodied fully in this limit. With non-zero force constant for the localised oscillator, 
the energy levels calculated by Darwin” are involved in the calculation of the 
canonical density matrix and therefore of its trace which is essentially the partition 
function. 

The idea behind the present work is then simply stated. Each electron is taken as 
oscillating in a harmonic potential well produced by the other electrons in the Wigner 
crystal. This is an Einstein model including field dependent zero point motion. The 
mean square displacement ( r ’ )  in the plane will be field and temperature dependent 
and can be calculated from the canonical density matrix C(r,  8) as 

where B = l /kT This calculation” gives 
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where wL is the Larmor frequency eH/2mc,  

cosh(a) 
sinh(ba) 

F(a,  b )  = coth(bcc) - (3) 

and a = ho,,/kT The parameter b is given by 

h = ( 1  + of/oi)”2 (4) 

where ow is the natural frequency of the localised Wigner oscillator, which will be 
close to the characteristic phonon frequency wo given by Bonsall and Maradudin‘’ as 
L I ) ~  = 8r2/mu3. 

I t  is convenient to work in terms of the reduced variables t = TIT,, where Tm, is the 
melting temperature of the classical crystal, the Landau level filling factor v = nhc/eH 
and r ,  = r O / u H  where ro = (nn)-”’ in 2 dimensions. Eq. ( 2 )  then becomes 

(r’)  - ( J 3 / 2 n ) v  - 0 . 2 7 6 ~  
a 2  h ~ ( c r ,  h )  bF(cr, h )  - - 

r m with CI = ---; b = ( 1  + Dv2r,)’12 
vr, t ( 5 )  

and we have assumed a triangular lattice for the 2 - D  crystal. The only free parameter 
is the constant D = I .158 (oW/wI,)’  which defines the natural frequency of the Wigner 
oscillators. I t  is instructive to consider the limiting forms of eq. ( 5 ) .  For rs $ 1, in the 
classical limit 

and this result is also obtained in the high field limit, v = 0, for all values of r,. Thus, as 
is  well known, a magnetic field suppresses the zero-point motion and produces a 
classical 2-D crystal. At t = 0, the only contribution to (r’)  comes from the 
zero-point motion in which the quantum limit, r, = 0, is given by 

( r 2 ) / a 2  = 0 . 2 7 6 ~  

= 2 1 3 a 2  ( 7 )  

where 1, = hc/rH is the magnetic length. For rs % 1 at t = 0 we have the zero-point 
motion of the 2-D oscillator 

In this model (r’)  is defined with respect to a lattice point in the crystal. But in 2-D 
( r 2 )  diverges logarithmically20 as the overall crystal size increases to infinity, due to 
low frequency acoustic modes. However, this does not prevent the formation of a 
crystal as the relevant parameter is the mean relative displacement of nearest 
neighbours defined as 
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and called the mean melting parameter by Lozovik et aL2 For our Einstein model we 
have 

y = (r: >/a2 + (r?, >/a2 - (2riri+ >/a’ 

= 2(r2>/a2 (10) 

since the motion of neighbouring electrons is uncorrelated. 
There is strong experimental evidence” that the melting of a 2-D classical crystal is 

a Kosterlitz-Thouless (K-T) transition due to the thermal unbinding of dislocation 
pairs when the shear modulus p is given by 

p = 4nkT/a2. (1 1) 

Hence the melting temperature T,, of a 2-D classical crystal is 

where rm = 127 
In order to apply the K-T criterion to our general model we require a relationship 

between p and the parameter y .  In the classical limit the shear modulus decreases with 
temperature (for t G 1) as 

(13) 

where po is the zero temperature modulus and C has been measured experimentallyz3 
as 0.3 ? 0.1. Computer simulations by M ~ r f ~ ~  (which gave C = 0.23) and Bedanov et 
~ l . ~ ’  and calculations by Lozovik et strongly suggest that the decrease in ,u is due 
to anharmonicity of the electron lattice. However, this anharmonicity seems to have 
much less effect on y which increases almost linearly with temperature,*’ as eq. (6) 
until the K-T transition intervenes at y = ye = 0.03. In this classical limit this 
Lindemann melting criterion and the K-T transition both lead to a melting tempera- 
ture T,, as given in eq. (12). We can use this result to determine the vibrational 
parameter D = 1.104/yer, = 0.292 in our model eq. (5) .  In the high density, quantum 
limit at T =  0 the K-T transition is suppressed (i.e. only occurs when p falls to zero) 
and p will continue to  decrease as y = 0.552~ increases beyond y c .  Lozovik et aL2’ 
have calculated p and y versus v in this limit and found that p decreased and y 
increased almost linearly until the crystal became unstable at  v = vq (0.126 in their 
calculations) due to anharmonicity. 

Combining the classical and quantum results we therefore assume that, in general, 

3, as determined experimentally for electrons on helium.z3 

p* = p/po = 1 - Ct 

P* = 1 - Ay(r,, H ,  TI; 7 Y q  

= Pl ; Y = Y q  

= o  ; Y > Y q  (14) 
where y is given by eqs. (10) and (9, until y = yq at p* = p1 when the crystal becomes 
unstable. Glattli et a l l 3  found that the low temperature limit of their postulated 
Wigner crystal occurred for v = vq = 0.192 which is equivalent to yq = 0.106 and we 
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use this value. Hence the only free parameter in our model is pl. Even this is tightly 
constrained since, in eq. (13), C = (1  - p l ) y c / y q  and hence for C = 0.2324, p1 = 0.19 
while for C = 0.3 f 0.122 we find pl  = -0.06 f 0.35. 

Finally, from eqs. (1  1 )  and (14) the 2-D melting temperature t, is given by 

= o  ;Y ’ Y q  (15) 

For y < yq this will be a K-T transition while for y = y q  the transition could be driven 
by an anharmonic instability in the lattice vibrations, though other mechanisms could 
be invoked. Note that eq. (15) is not equivalent to a pure Lindemann criterion since 
y,, the value at the melting point, is 

(16) 

where y o  = 1 /A .  Our model corresponds to a temperature dependent yrn .  
At finite temperatures we should also consider the thermally excited modes in the 

crystal. In a magnetic field the longitudinal plasmon mode w,(q) and the transverse 
phonon mode w,(q) are transformed to two magnetophonon modes w* (4) where 

(17) 
In a complementary approach to the one taken in this paper Saitoh26 calculated 

( r 2 )  from the excitation of these collective w ,  and w -  modes, and used the 
Lindemann criterion to obtain the melting curve. The Einstein model gives qualita- 
tively similar results, though Saitoh’s calculations predict larger quantum effects at 
relatively low electron densities. 

In high fields w, p w,, the zero-point energy is contained in the w ,  mode, close to 
the cyclotron frequency. It is this motion that has been treated quantum-mechanically 
in the Einstein model above. The low frequency transverse w -  mode will be thermally 
excited for 

Y r n  = t m Y c  + (1  - t m ) Y o  

0: = (0,‘ + (0; + wf; 0- = w,w,/w,. 

~ ““(9))’ %-< ‘mv 1 
kT kT w, 2t 

where w, is the cyclotron frequency. It was the propagation of the w -  mode which 
Andrei et a l l 2  used as the criterion for a solid. But this mode will only contribute 
thermally to ( r 2 )  for 1’ < 0.02t in the high field classical limit. It would then give a 
term proportional to T but since eq. (5) already provides such a term in this limit no 
extra contribution from the 01- mode is required. 

Figure 1 shows a schematic phase diagram in the t-v plane for several values of rs .  In 
the classical low density limit, rs + 00, the melting temperature is independent of 
magnetic field. As the density increases the zero field melting temperature decreases. 
In the quantum limit, rs --f 0, the phase diagram is independent of density and the 
melting temperature has its classical value for v = 0. As v increases t ,  decreases, but 
remains a K-T transition until y = yq when some other instability occurs at v = 0.192 
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t 

0 .5  - 

0 0 1  0 . 2  0 .3  0 .4  
F I L L I N G  F A C T O R  

Figure 1 Schematic phase diagram of the 2-D electron solid for several values of rs .  

for the parameters used here. The dashed lines show the extrapolation of the K-T 
transition. 

We will now compare this simple model with experiments on classical and quantum 
2-D electron solids. 

2.1. 

I t  is well established that in the classical, or low density limit, r ,  = co, the melting 
temperature equals T,,, eq.(l2), for a K-T transition with rm = 127 f 3 [23]. A 
magnetic field should have no effect on the thermodynamics of a classical solid and T, 
should be independent of H.2',29 However, at high densities T, should be less than 
Tmc. These effects have been calculated by several a ~ t h o r s , ~ ~ - ~ l  notably by Chang and 
Maki,29 Fisher2' and Saitoh26 though the results vary considerably. 

Saitoh26 calculated y for the longitudinal and transverse magnetoplasmons in the 
2-D crystal and used the modified Lindemann criterion y = ym = 0.03 to obtain the 
phase diagram for all densities. His results predict relatively large increases in T,(B) 
with magnetic field at densities which are easily accessible for electrons on helium. 
Chang and Maki29 calculated the shear modulus, allowing for anharmonicity, for all 
densities in zero field. In the classical region, r ,  > 300 they found that the small 
quantum corrections increased p, i.e. stiffened the crystal, and hence T,(O) > T,, 
though the effect was small. Fisher2' calculated the shear modulus for a high density 
crystal in the high-field, or classical, limit and also found an initial increase in T, > T,, 
as the field is reduced from infinity. 
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I I I 1 I 1 I I I 1 

- 20 
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0 2 4 6 8 
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Figure 2 The experimental data of Mehrotra et a/.” for 2-D electrons on helium showed a decrease in the 
melting temperature in zero tield below the classical result Eq. (12). The solid line shows the model 
calculations. 

Our  model is equivalent to a temperature dependent Lindemann criterion, eq. (l6),  
and hence will always give T, < T,, though the magnitude of the quantum corrections 
will be less than the pure Lindemann criterion used by Saitoh. 

Experimentally, the situation is unclear. In zero field Mehrotra, Cuenin and 
Dahm32 found a decrease in T, below T,, for electrons on helium for n < 8 x 
lo8 cm-2 as shown in Figure 2. The solid line shows the quantum corrections 
calculated from our model with p l  = 0.2, which are in good agreement with the 
experiments. No quantum corrections to T, were reported by K 0 n 0 ~ ~  or Deville22 for 
n < 12 x lo8 c m - 2  for electrons on helium or by Kajita34 for n < 2 x 10” cm-2 for 
electrons on solid neon, though in each case the measured T, and the predicted 
quantum corrections are within the error bars. 

have measured the field dependence of T, for electrons on 
helium for n = 8.1 x lo8 cm-* as shown in Figure 3. They found that T, was 
almost independent of field, possibly decreasing slightly to 7 T. These results are in 
better agreement, within the error bars, with the theories of Fisher2* and Chang and 
MakiZ9 than with the simple model presented here. 

However, both the experiments and theory are difficult and subtle in this region. 
The main conclusion is that quantum effects are small and difficult to compute or 
observe in the experimentally accessible region for electrons on cryogenic substrates. 

Recently, Stone et 

2.2. The quuntum 2 - 0  crystal 

The 2-D electron assembly has been extensively studied in Si MOSFET’s and in 
CaAl/GaAlAs heterostructures. In zero magnetic field these systems are in the high 
density limit and the electrons form a Fermi degenerate gas. As the magnetic field is 
increased, the Integer and Fractional Quantum Hall effects are 0 b ~ e r v e d . j ~  The latter 
is characterized by a series of new ground states of the electron fluid, which is 
providing a wealth of new Physics. A t  the highest fields, for v < 0.2, Andrei et a/.” and 
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Figure 3 The experimental data of Stone et for 2-D electrons on helium, n = 8.1 x lo8 cm- ’, showed 
that T, was almost independent of magnetic field from 0.5 to 77: The dashed line shows the calculation of 
Fisher28 (with Tmc = 643.5 mK) while the dot-dashed line shows the result of the model used here (with 
T,< = 662 mK). 

Glattli et a l l 3  have reported the probable occurrence of the MIWS for v < vq = 
0.192 0.004. The electron density for these experiments gives 1.6 < I ,  < 2.5. The 
experimental solid-fluid transitions t ,  in the t-v plane are shown in Figure 4. The data 
for many densities is shown and while the error bars are quite large, the general shape 
of the phase diagram is clear. 

For r, I 5, our model calculations suggest that, on a t-v plot, the phase diagram 
corresponds to the quantum limit and is independent of density. The model phase 
diagram is shown in Figure 4 for p1  = 0.2 (line a) and 0 (line b). For pl = 0 the 
transition remains of the K-T type down to the lowest temperatures. However, a 
better fit to the data is obtained for p l  = 0.2 with a sharp drop in t ,  at vq = 0.192. 
Thus the transition would be of K-T type for t ,  > 0.24, but some other form of 
crystalline instability would occur at lower temperatures. In a real system the detailed 
form of the phase diagram near v q  would depend on the increasing anharmonicity and 
the nature of the excitations and ground state of the solid and fluid phases. 

In the high field limit, v -+ 0, the transition temperature of the ideal 2-D system 
should tend to TmC. But at high electon densities the finite extent of the wave functions 
perpendicular to the 2-D plane will modify the Coulomb i n t e r a ~ t i o n ~ ~  and should 
reduce t ,  by a factor of about 0.87.12 With this in mind the model phase diagram 
agrees reasonably well with the data. 

This model can also be used to calculate the phase diagram for intermediate values 
of I , ,  a region not yet accessible experimentally. A key parameter here is the limiting 
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0 0.1 0 2  

F I L L I N G  F A C T O R  
Figure 4 (A)  for 2-D electrons in 
GaAs/GaAlAs heterostructures. The points represent the onset of a new mode in the response of the 
electron gas which was interpreted as a phase transition to an MIWS. The solid lines show the model phase 
diagram for p ,  = 0.2 (line a )  and p = 0 (line b). 

The experimental data of Andrei et a/.” (0)  and of Glattli et 

value of rs = rw at which the 2-D Wigner solid in stable in zero magnetic field. For our 
model that is given by 

0.2767, I-,,, 
rw = 

73 
and has the value 93 for the parameters used. This has not yet been measured 
experimentally though a wide range of values have been found t h e ~ r e t i c a l l y ~ ’ * ~ ~  from 
4.5 to 1400. Probably the best estimate, rw = 33, comes from the computer simula- 
tions of Ceperley3’ and Imada and Takahashi31. In this region an Einstein model 
may be less valid as the zero-point motion of the propagating plasmons will determine 
( r 2 )  and the crystal could remain stable to higher densities. 

It is interesting to speculate on the existence of the 2-D hexatic phase on this phase 
diagram. In the classical limit, Nelson and Halperin3* argued that the K-T transition 
should be from a solid to an orientationally-ordered phase with the transition to a 
true fluid occurring at a temperature t ,  2 1. This hexatic phase has not yet been 
observed experimentally, though a transition in viscosity was found by Frankel and 
M ~ T a g u e ~ ~  in a computer simulation, at  t ,  = 1.58. Since the v = 0 phase diagram in 
the high density limit is the same as the classical one, this phase should also be present. 
Other phases of the fluid or solid could also exist. 
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SUMMARY 

In 2-D a simple phenomenological model has been presented as a framework for 
discussion of the experiments on the 2-D classical electron solid on helium and neon 
and on the MIWS in GaAs/GaAlAs heterostructures. The parameters of the model 
are determined, within close limits, by results from computer simulations and 
experiments. While it is not expected to be fully quantitative it does give a guide to the 
phase diagram in both the classical and quantum regions. 

The similarity between the results of Andrei et al.” and Glattli et ~ 1 . ’ ~  and the 
model developed in the present paper lends strong support to their claim that 
quantum-mechanical electron solidification has occurred in their experiment, aided 
by a magnetic field. Much more sophisticated theoretical approaches5.’ 3 * 2 7 - - 3 1 9 4 0  

have been used for aspects of this problem and may be generalised in the future. Many 
other types of ground state order could also be present in the phase diagram besides 
the simplest electron solid discussed here. 

As for further experimental studies, propagation of shear waves establishes an 
electron solid, but not longer range order. Bragg diffraction studies are still needed to 
establish crystallinity for the Wigner solid in semiconductors, as has been done using 
ripplons for the 2D classical solids of electrons on helium41 and of positive ions below 
the helium surface.42 
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